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We demonstrate that electrons in quantum dots defined by electrostatic gates in semiconductor nanotubes
freeze orderly in space realizing a “Wigner molecule.” Our exact diagonalization calculations uncover the
features of the electron molecule, which may be accessed by tunneling spectroscopy—indeed some of them
have already been observed by Deshpande and Bockrath �Nat. Phys. 4, 314 �2008��. We show that numerical
results are satisfactorily reproduced by a simple ansatz vibrational wave function: electrons have localized
wave functions, like nuclei in an ordinary molecule, whereas low-energy excitations are collective vibrations of
electrons around their equilibrium positions.
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I. INTRODUCTION

The paradigm of few-electron complexes in quantum dots
�QDs� relies on the “particle-in-a-box” idea that lowest-
energy orbitals are filled according to Pauli’s exclusion
principle.1,2 If Coulomb repulsion is sufficiently strong to
overcome the kinetic energy cost of localization, a different
scenario is predicted:2,3 a “Wigner” molecule �WM� forms,
made of electrons frozen in space according to a geometrical
pattern. Despite considerable experimental effort,4 evidence
of the WM in semiconductor QDs has been elusive so far. In
this paper we demonstrate theoretically that WMs occur in
gate-defined QDs embedded in typical semiconducting car-
bon nanotubes �CNTs�. Their signatures must be searched—
and indeed some of them have already been observed5—in
tunneling spectra. Through exact diagonalisation �ED�
calculations,6 we unveil the inherent features of the electron
molecular states. We show that, like nuclei in a usual mol-
ecule, electrons have localized wave functions and hence
negligible exchange interactions. The molecular excitations
are vibrations around the equilibrium positions of electrons.
ED results are well reproduced by an ansatz vibrational wave
function, which provides a simple theoretical model for
chemical potentials and charging energies of ultraclean
CNTs.5,7–9

In graphene—the unrolled CNT—the ratio of Coulomb
potential to kinetic energy is too small to expect Wigner
crystallization as well as it is unaffected by carrier density,
the usual tuning parameter.10 On the other hand, the kinetic
energy ���0 associated to the confinement into a dot em-
bedded in a semiconducting CNT may be controlled by an
external gate.7–9 By keeping the electron number N fixed and
decreasing ��0, one decreases the density as well to enforce
the WM state.

The Coulomb-to-kinetic-energy ratio may be expressed in
terms of the dimensionless length per electron rs �rs
=1 / �naB

�� with n being the electron density and aB
� the effec-

tive Bohr radius�. Remarkably, in QDs embedded in semi-
conducting nanotubes rs is typically one order of magnitude
larger than the analogous two-dimensional quantity for nano-
structured semiconductor QDs. For example, rs�40 for the
CNT dot of Fig. 2�a� whereas rs�2 for the GaAs quasi two

dimensional dots11 studied in Refs. 4. Therefore CNTs are
excellent solid-state candidates for the realization of the WM
state.

At low energies, electron degrees of freedom in the direc-
tions perpendicular to the CNT axis y are frozen, hence the
QD is effectively one-dimensional �1D�. Wigner crystalliza-
tion in such a system is not fully understood yet. Since the
long-range order of the 1D crystal is smeared by quantum
fluctuations, a possible theory relies on the Luttinger liquid
model in the presence of long-range interactions.12,13 How-
ever, semiconducting CNT dots have properties which are
not easily included in Luttinger theory, such as quadratic
dispersion relation14 and quantum confinement.15

We exploit the paradigm of the WM, alternative to the
Luttinger model, to interpret the outcome of our EDs. In our
numerically exact many-body calculations of both ground
and excited states we include intra- and intervalley Coulomb
scattering processes16–18 as well as spin-orbit coupling.16,17

The envelope-function parts of single-particle states,19,20

slowly varying with respect to the lattice constant a, are
eigenstates of a 1D harmonic oscillator of frequency �0,
which is the generic low-energy model for gate-induced con-
finement along the CNT axis.2,16,18

With respect to previous WM literature,2,16–18 in this pa-
per we provide: �i� an effective envelope-function theory for
low-energy states of ultraclean CNT dots, including the cru-
cial effects of a large energy gap, valley degeneracy, and
spin-orbit interaction; �ii� a criterion for crystallization,
which is non-trivial for finite systems, as well as it may be
experimentally accessed; �iii� a novel ansatz wave function
for both ground and excited states, validated by ED.

The structure of this paper is the following: The first four
sections detail the theoretical method. In particular, Sec. II
introduces CNT bulk states, Sec. III models the QD, Sec. IV
reports the fully interacting many-body Hamiltonian, and
Sec. V explains the exact-diagonalization algorithm. The
hasty reader may skip these technical sections and go di-
rectly to Sec. VI, which is self-contained and reports the
predicted phase diagram for the WM state. Then Sec. VII
shows that the WM is indeed a molecule made of electrons,
by means of providing an ansatz wave function which com-
pares well with ED data. After the Conclusion �Sec. VIII�,
Appendix A details the normalization of single-particle wave
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functions, Appendix B explains the calculation of two-body
matrix elements, Appendix C discusses the effect of spin-
orbit interaction on WM energy levels, Appendix D provides
WM equilibrium positions and eigenfrequencies of the nor-
mal modes of vibration.

II. NANOTUBE BULK STATES

Consider the two inequivalent triangular sublattices A and
B of ideal graphene. The origin of the xy frame is on a B-site
and the y axis is parallel to the vector connecting the origin
to its nearest-neighbor A-site �Fig. 1�. The lattice sites RA
and RB are identified by the integers n1 and n2, RA�a�n1
−n2 /2,�3n2 /2+1 /�3�, RB�a�n1−n2 /2,�3n2 /2�, where a
=2.46 Å. The two inequivalent corners of the hexagonal first
Brillouin zone are K��1 /3,1 /�3�2� /a and K�
��2 /3,0�2� /a.

The CNT is obtained by wrapping the graphene sheet
along a direction identified by the chiral vector.21,22 We in-
troduce a rotated reference frame such that the x axis is par-
allel to the chiral vector and y identifies the CNT axis �see
Fig. 1�. The new coordinates of atomic positions and wave
vectors are obtained by applying the rotation matrix

R��� = 	 cos��� sin���
− sin��� cos���



to old vectors, with � being the chiral angle. Throughout this
paper we use the same symbols for new and old coordinates.
Hence x� �0,2�R� is the curvilinear coordinate along the
CNT circumference, y� �−Ly /2,+Ly /2� where Ly is the
CNT length, and z� �−Lz /2,+Lz /2� is orthogonal to the
CNT surface. R is the CNT radius and Lz is the characteristic
length associated with 2pz orbitals, whose amplitude may be
neglected outside the domain of z.

Close to the charge neutrality point CNT electrons have
energies Ec�K+k�=��kx

2+ky
2�1/2�Ec�K�+k��=��kx�

2+ky�
2�1/2�

in valley K�K��, where k�k�� is the wave vector reckoned
from K�K��. Here � is the �-band parameter of graphene21,23

��=533 meV·nm� and kx�n��kx��n�� is quantized according
to kx�n�= �n−� /3� /R�kx��n�= �n+� /3� /R�, with n integer and
�= �1 for semiconducting CNTs, �=0 for metallic CNTs.24

We focus on semiconducting tubes, where the two inequiva-
lent conduction-band minima M and M�, slightly displaced
from points K and K�, correspond to k��kx�0� ,0� and k�
��kx��0� ,0�, respectively.

The Bloch states at band minima are given by

�	�r� = �
p=A,B

f	
p
	,p�r� , �1�

where we have introduced the isospin index 	=+1�	=−1� for
point M�M��. Here the phase factors are f+1

A =1, f+1
B =+�,

f−1
A =1, f−1

B =−�, and


	,p�r� = e−i�	x/�3R��	,p�r� �2�

is the tight-binding state of the pth sublattice.20,21 The isospin
	= �1, labeling the orbital angular momentum quantum,
points to the �anti�clockwise rotation along the circumfer-
ence coordinate x perpendicular to the CNT axis y. The tight-
binding state �Eq. �2�� is given by a sum over 2pz atomic
orbitals, with

�	,p�r� = ei�	
p 1
�Nc

�
�Rp


eiK	·Rp�pz
�r − Rp� . �3�

In Eq. �3� the sum runs on the sites Rp of the pth sublattice,
Nc is the number of unit cells �one cell contains two carbon
atoms�, K	 stays for K�K�� for 	=+1�	=−1�, �pz

�r� is the 2pz

atomic orbital, �+1
A =0, �+1

B =�+5� /3, �−1
A =�, �−1

B =0. The
normalization of pz orbitals is
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FIG. 2. �Color online� �a� Typical WM chemical potentials 
�N�
vs B for 1�N�5 electrons. The curves for N=2,3 ,4 ,5, were rig-
idly shifted by −20, −38, −55, −72 meV, respectively. Whereas at
B=0 T ground states are highly degenerate �within an energy range
of at most �1 
eV�, the field selects the �iso�spin-polarized states.
�b� Typical particle-in-a-box 
�N� vs B for R=3 nm, ��0

=15 meV, �=3. The curves for N=2,3 ,4 ,5, were rigidly shifted
by −27, −52, −75, −97 meV, respectively. �c� WM phase diagram
in the �� ,��0� space for R=1 nm and 2�N�5. The vertical error
bar of each point corresponds to 0.1 meV. The violet �gray� �black�
dot identifies the QD of Fig. 2�a� �the device D1 of Ref. 5, with
R=0.8 nm�. �d� Same as Fig. 2�c� for R=3 nm. The black dot
identifies the QD device of Ref. 7 �R=3.6 nm�.
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FIG. 1. Schematic representation of the graphene lattice. � is the
CNT chiral angle.
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�
CNT

��pz
�r − Rp��2dr = VCNT, �4�

where the integration is over the whole CNT and VCNT
=Lx Ly Lz.

III. QUANTUM-DOT SINGLE-PARTICLE STATES

We consider a QD embedded in a semiconducting CNT
whose length scale, �QD—typically of the order of 10 nm—is
much smaller than the CNT length—of order 102–103 nm,
�QD�Ly.

5,7 Since �QD is the relevant single-particle �SP�
length the effects of CNT boundaries may be neglected and
ky considered as quasi-continuous, as opposed to the level
quantization due to the CNT finite size.25,26 We assume the
quantum confinement to be induced by a gate-modulated soft
potential,5,7 and consider as generic functional form the qua-
dratic potential

1

2
m��0

2 y2,

where m�=�2 / �3R�� is the effective mass,19,20 �0 is a char-
acteristic frequency, and �QD= �� /m��0�1/2. In fact, for a soft
potential, the first term of its series expansion is quadratic.27

Since �QD�a, SP dot wave functions

�n	�r� = NFn�y��	�r� �5�

are written16,19,20 as products of Bloch states �	�r�, rapidly
oscillating on the length scale a, multiplied by the slowly
varying envelope functions Fn�y�, eigenstates of the one-
dimensional harmonic oscillator �n=0,1 ,2 , . . .�. In Eq. �5�
the normalization constant N is such that

�
CNT

�n	
� �r��n�	��r�dr = �n,n��	,	�, �6�

with

�
−�

+�

Fn
��y�Fn��y�dy = �QD�n,n�. �7�

In Appendix A we show that the normalization factor is

N =
1

�2LxLz�QD�1/2 , �8�

where Lx=2�R.
The single-particle energy �n	� is the sum of four contri-

butions:

�n	� =
�

3R
+ ��0	n +

1

2

 + ��SO

�

R
	�

+ 
BB	g�

2
� − �

mR�

�2 	
 . �9�

The first term is half the CNT energy gap, i.e., the distance
between the bottom of conduction band and the point in the
middle of the gap, taken as a reference. The second one is the
oscillator energy. The third contribution accounts for spin-

orbit coupling, entangling spin and isospin parts of the wave
function �the spin projection along y is �= �1�. Here we
consider only the dominant effect of CNT
curvature,7,16,17,28,29 taking as dimensionless coupling con-
stant �SO=1.25�10−3. The last addendum is the Zeeman
term coupling the �iso�spin magnetic dipole with the mag-
netic field B applied along y. Here 
B is the Bohr magneton,
g�=2 is the effective giromagnetic factor, m is the free elec-
tron mass.

IV. MANY-BODY HAMILTONIAN

The QD many-body Hamiltonian Ĥ is the sum of one-
and two-body operators, expanded on the basis of single-
particle states �n	�r� discussed above:

Ĥ = ĤSP + V̂FW + V̂BW. �10�

The single-particle term ĤSP takes into account the orbital
filling,

ĤSP = �
n	�

�n	� ĉn	�
† ĉn	�, �11�

where ĉn	�
† creates an electron with spin � in the orbital state

�n	�r�. The forward �FW�

V̂FW =
1

2 �
nmpq

�
		�

�
���

Vn	,m	�;p	�,q	 ĉn	�
† ĉm	���

† ĉp	��� ĉq	�

�12�

and backward �BW�

V̂BW =
1

2 �
nmpq

�
	�	�

�
���

Vn	,m	�;p	,q	� ĉn	�
† ĉm	���

† ĉp	�� ĉq	��

�13�

two-body operators rule Coulomb scattering processes, with
electrons, respectively, conserving and exchanging their val-
ley location in the reciprocal space.22 Both FW and BW pro-
cesses conserve the total lattice momentum. Other scattering
channels which do not conserve momentum have been ne-
glected since they are orders of magnitude smaller.

The Coulomb matrix element is written as

Vn	,m	�;p	�,q	� = �QD
−2 � � Fn

��y�Fm
� �y��

� U	,	�;	�,	��y,y��Fp�y��Fq�y�dydy�,

�14�

where U	,	�;	�,	��y ,y�� is an effective 1D interaction poten-
tial, given by

U	,	�;	�,	��y,y�� =
1

4Lx
2Lz

2� � �	
��r��	�

� �r��U�r − r��

� �	��r���	��r�dr�
�2�dr��

�2�, �15�

with the integration performed over the coordinates perpen-
dicular to y. Here the two-body potential
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U�r − r�� = U0 �1 + �2�r − r��2U0
2 /e4�−1/2 �16�

is the Ohno potential, interpolating the two limits of
Coulomb-like long-range and Hubbard-like short-range
interactions—the latter limit is the Hartree contribution of
the 2pz orbital of a single carbon site.16,22,30,31 In Eq. �16�
U0=15 eV and � is the CNT dielectric constant.

As we show in Appendix B, manipulation of Eq. �15�
provides the effective 1D potential for FW scattering
UFW�y−y���U	,	�;	�,	�y−y��,

UFW�y − y�� =
2e2

��

K�2R�4R2 + L2 + az
2 + �y − y��2�−1/2�

�4R2 + L2 + az
2 + �y − y��2�1/2 ,

�17�

where L=e2 / �U0��, K�k� is the complete elliptic integral of
the first kind �0�k2�1�,32 and az=3aB, with aB being the
Bohr radius. Note that, as �y−y��→� in Eq. �17�, K→� /2
and UFW�y−y�� behaves as the Coulomb potential. On the
other hand, BW scattering is short ranged with respect to the
length scale �QD, with typical matrix elements being orders
of magnitude smaller than those for FW scattering. Explic-
itly, the effective 1D BW potential UBW�y−y��
�U	,−	 ;	,−	�y−y�� is

UBW�y − y�� = ŨBW

�3a2

8�R
��y − y�� , �18�

where ŨBW�4 eV is a constant whose value is determined
by the lattice structure.22

By using expressions �17� and �18� into Eq. �14� we are
left with a two-dimensional numerical quadrature involving

the envelope functions Fn�y�. Note that V̂FW conserves the
total �iso�spin S �T� as well as its projection Sy�Ty�, whereas

the symmetry-breaking effect of V̂BW is negligible. The spin-

orbit term appearing in ĤSP conserves only Sy and Ty.

V. EXACT DIAGONALIZATION

We solve the N-body problem by exactly diagonalizing Ĥ
�Eq. �10��, which is a matrix in the Fock space of Slater
determinants ��i

N� �the method is also known as full configu-
ration interaction�.6 We build the Slater determinants ��i

N� by
filling in all possible ways with N electrons the NSP lowest-
energy SP orbitals �n	�r�, twofold spin-degenerate when B
=0 and �SO=0. We take NSP=30 for the extensive ground-
state calculations of Figs. 2 and 4 and NSP=50 otherwise.
Both ground and excited many-body states ��N

�n��, written as
linear combinations of Slater determinants,

��N
�n�� = �

i

ci
�n���i

N� , �19�

are obtained numerically, together with their energies, by
means of the parallel code DonRodrigo.33 The code output
�i.e., the coefficients ci

�n�� is then postprocessed in order to
calculate the charge density n�y� and pair correlation func-
tion g�y� for a given state �see Sec. VII�. The diagonalization
proceeds in each Hilbert space sector labeled by N, Sy, and

the parity of the total envelope wave function under spatial
reflection y→−y. Note that the symmetry-breaking effect of
spin-orbit interaction largely increases sector matrix sizes by
mixing blocks labeled by different values of S �the maximum
linear size we have managed is 883 232 for N=5 and NSP
=30�. The relative error for low-lying excitation energies,
estimated for the Kohn �center-of-mass� mode with N=4, is
smaller than 10−7.

VI. PHASE DIAGRAM

The WM is made of localized electrons whose mutual
exchange interactions are negligible,3,34 so no energy is re-
quired to orient all spins � along a magnetic field B parallel
to the CNT axis, y. Similarly, in the WM state Coulomb
interactions between electrons do not depend on their isos-
pins 	—the orbital angular momentum along y labeling val-
leys K�	=+1� and K��	=−1� in the reciprocal space.23 These
features, which hold also in the presence of spin-orbit cou-
pling �cf. Appendix C�, are fingerprints of the WM and may
be directly observed from the slopes of the chemical poten-
tials 
�N� measured in tunneling experiments.1

To validate this claim, we obtain 
�N�=E0�N�−E0�N
−1� through the ED calculation of ground state energies
E0�N� for consecutive electron numbers. Figures 2�a� and
2�b� show the predicted 
�N� vs B in the two exemplary
cases of WM �Fig. 2�a�� and particle-in-a-box �Fig. 2�b��
ground states, respectively.

In Fig. 2�a�, computed for a realistic QD with ��0
=3 meV, CNT radius R=1 nm, dielectric constant �=1.5,
all curves are parallel straight lines pointing downward in
energy with B. This is distinctive of the WM, since 
�N�
depends on B only through the single-particle �iso�spin Zee-
man terms and each added electron enters the QD with the
same �iso�spin aligned to B—to minimize the magnetic di-
pole energy.

Remarkably, spectra like those of Fig. 2�a� were recently
observed up to N�10 holes in ultraclean QDs embedded in
gated suspended tubes.5 Indeed, the ED hole spectrum re-
ported in Fig. 3 compares well with Fig. 2c of Ref. 5 �phase
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FIG. 3. Typical WM chemical potentials 
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energies �vertical right axis� into voltages by using the conversion
factor �=14� estimated in Ref. 5 with an arbitrary shift.
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I�. In particular, the energy separation of �8 meV between
adjacent 
�N� at B=0 agrees well with the experimental
data. Note that the parameters of the ED calculation of Fig. 3
have been taken from the estimates given in the main text of
Ref. 5 when available �R and g��, whereas the unavailable
parameters �� and ��0� were obtained by fitting the plots of

�N� vs B, for different N, to the experimental curves. Im-
portantly, the number of free parameters in our calculation
�two� is much smaller than the number of experimental con-
straints �five 
�N� curves�. Besides, it is worth noting that
the gapped Luttinger liquid theory13 used to explain the
phase diagram of Ref. 5 accounts for neither the large energy
gap ��220 meV� nor spin-orbit coupling.7

The particle-in-a-box model is recovered by significantly
reducing the Coulomb-to-kinetic energy ratio, which is ac-
complished by increasing ��0, R, or � �the latter is strongly
sensitive to the presence of external leads�, as shown in Fig.
2�b�. Close to B=0 T the curves have now slopes depending
on N, according to the values of � and 	 of tunneling elec-
trons. The latter manifest the filling of the QD orbitals and
are ruled by Hartree, exchange, and spin-orbit
interactions2,23,35 �the shell filling sequence is shown in Fig.
4�. Whereas for finite values of B the 
�N� of Fig. 2�b� show
kinks due to the crossings of competing ground states, the
slopes of Fig. 2�a� are perfectly constant and negative. This
disparate behavior may be easily discerned experimentally,
providing an operative definition of the WM phase.

The WM phase diagram in the �� ,��0� space is shown in
Fig. 2�c� �Fig. 2�d�� for R=1 nm �3 nm�. The WM region
identifies the locus of parameters for which 
�N� is a straight

line along the B-axis pointing downward. Since no sharp
phase transition occurs to the WM, boundaries depend on
N—an effect of the finite size of the system. Specifically, the
position of the boundary line depends on the excitation en-
ergy of the lowest state with maximum �iso�spin. This energy
is almost constant for N=2,3, related to a change of the
orbital parity. A second contribution adds for N=4,5, due to
additional �iso�spin flips. As N increases, a smaller value of
either � or ��0 is required to enter the WM phase �for fixed
��0 the density increases with N �Ref. 2��. Hence boundary
lines accumulate in the bottom regions of the plots.

The black dots shown in Figs. 2�c� and 2�d� point to the
QD devices studied in Refs. 5 and 7, respectively. In both
cases the computed plots of 
�N� vs B nicely match their
experimental counterparts �cf. Fig. 3 and Ref. 16�. Overall,
in Figs. 2�c� and 2�d� both the WM and particle-in-a-box
phases are ground states for a broad range of values of ��0
and � which may be realistically achieved in current
experiments.5,7–9

Figure 2�c� suggests that, for the QD of Ref. 5 �black dot�,
one exits the WM phase by increasing N �boundary lines
move at lower values of ��0�. In Ref. 5, the WM state �there
labeled phase I� is replaced by the isospin polarized, spin
antiferromagnetic phase II at N�10, and then by the unpo-
larized phase III at N�15. This scenario is consistent with
the phase diagrams of Fig. 2. In fact, as illustrated in Fig. 4
for N�2, phases II and III map into different particle-in-a-
box regions along the B axis: the latter is unpolarized close
to B=0, the former is isospin polarized at finite B. Note that
strong values of B eventually induce phase I, i.e., the spin-
and isospin-polarized state. By moving upward along the
��0 axis in the diagram of Fig. 2�c�, we expect the critical
values of N to decrease as well as the region II of the
particle-in-a-box phase to vanish close to B=0.

VII. WIGNER MOLECULE ANSATZ WAVE FUNCTION

In the following we provide direct evidence that WM
states are indeed molecules made of electrons. To this aim,
we first plot in Fig. 5 the envelope-function part of the
charge density

n�y� =
1

N
�
i=1

N

���y − yi��

at zero field, for the same two sets of parameters as in Figs.
2�a� and 2�b� �Figs. 5�a� and 5�b�, respectively�. Here yi is
the coordinate of the ith electron and � . . . � is the quantum
average for a certain state. For the WM ground state with N
electrons, n�y� displays N clearly resolved peaks of approxi-
mately equal weights �Fig. 5�a��, whereas in Fig. 5�b� it
shows a compact droplet with a faint structure superimposed.
The charge inhomogeneity of Fig. 5�a� is due to the spatial
localization of electrons, controlled by the competing effects
of Coulomb repulsion and confinement of the harmonic po-
tential �the length unit �QD= �� /m��0�1/2 is the characteristic
length of the oscillator�. Whereas in Fig. 5�a� Coulomb in-
teraction breaks the spatial homogeneity of the electron
droplet, in Fig. 5�b� the effect of confinement is preponder-
ant, squeezing the charge density.
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FIG. 4. �Color online� Filling sequence for the spectrum re-
ported in Fig. 2�b�. The insets point to the Slater determinants with
the largest weights in the ED expansions of N-body ground states in
certain ranges of B �separated by vertical dashed lines�. The blue
�dark gray� �green �light gray�� ladders of levels depict the lowest
harmonic oscillator states for 	=+1�	=−1�, whereas arrows repre-
sent electron spins. Note that the sign of the slope of 
�N� depends
on the sign of the isospin 	= �1 of the tunneling electron injected
into the dot already filled by N−1 particles. For N�2 one may
discriminate between two distinct particle-in-a-box regions along
the B axis: �a� one unpolarized phase close to the origin; �b� one
isospin polarized, antiferromagnetic phase at finite values of B �the
larger N, the stronger B�. Regions �a� and �b� map, respectively, into
the experimental phases III and II reported in Ref. 5. For larger
values of B the spin- and isospin-polarized state �experimental
phase I� is recovered.
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We note that the density in the valleys between two con-
secutive peaks in the plots of Fig. 5�a� is finite. This behavior
is consistent with the fact that exchange interactions in the
WM are negligible. In fact, to assess the wave function over-
lap between two electrons one needs to compute the two-
body correlation function

g�y� � �
i�j

���y − yi + yj�� ,

giving the probability of finding two electrons at relative
position y, whereas n�y� is a one-body observable. In Fig.
6�a� we compare the WM with the particle-in-a-box ground
states, by plotting g�y� for N=2 �black and green �light gray�
curves, respectively�. The most remarkable difference is that
the probability of being in contact for two electrons is neg-
ligible only for the WM �g�y=0��0 for the black curve�.
Hence the mutual �iso�spin orientation is irrelevant to the
WM energy, consistently with our criterion for the phase
boundary �Fig. 2�. Besides, g�y� shows a clearly resolved
peak at y�3 �black curve of Fig. 6�a��, pointing to the freez-
ing of relative motion around a fixed equilibrium distance.

In order to build a simple ansatz for WM wave functions,
we parallel the construction of the vibrational wave function
of polyatomic molecules.36 Therefore, we consider N point-
like classical particles in the 1D quadratic trap of frequency
�0, interacting via the Coulomb potential e2 /��y1−y2�. For
the small, harmonic oscillations around equilibrium positions
ȳi we find the normal modes of vibration, with normal coor-
dinates Yi and eigenfrequencies �i, i=1, . . . ,N �see Appen-
dix D�. Then, we quantize the system and write the wave
function �vib as

�vib = �
i=1

N

�ni
�Yi� , �20�

where �ni
�Yi� is the nith excited state of the harmonic oscil-

lator for the ith normal mode of vibration, whose energy is
��i�ni+1 /2� �ni=0,1 ,2 , . . .�. The total ansatz wave function,
�ansatz�y1 ,	1 ,�1 ; . . . ;yN ,	N ,�N�, is given by the product

�ansatz = A�vib�iso�spin, �21�

respectively, of the vibrational �vib�Y1 , . . . ,YN�, the isospin
�iso�	1 , . . . ,	N�, and the spin �spin��1 , . . . ,�N� parts, where
A is the antisymmetrization operator and the Yi’s are ex-
pressed in terms of the original coordinates yi’s.

To compare the ED and ansatz WM wave functions, we
first notice that the locations of the maxima of the ED charge
densities n�y� of Fig. 5�a� nicely match the classical equilib-
rium positions ȳi, as shown in Table I. We then plot the
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= �� /m��0�1/2. �a� The parameters used for the ED calculations
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TABLE I. Selected locations of the peaks of the ED charge
density n�y� shown in Fig. 5�a� vs classical equilibrium positions.
The length unit is �QD. Analytical expressions for classical values
are provided in Appendix D. The parameters are �=1.5, R=1 nm,
��0=3 meV.

N Location Ansatz ED

2 ȳ2 1.5 1.6

3 ȳ3 2.6 2.7

4 ȳ3 1.1 1.1

4 ȳ4 3.5 3.6
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correlation functions g�y� for the ground states—up to four
electrons—in Fig. 6. The excellent matching between ED
�black curves� and ansatz �red �dark gray� curves� data points
to the intrinsic vibrational structure of the WM wave func-
tion: In fact, the peaks appearing in g�y� identify the equi-
librium distances of localized electrons, whereas the widths
of peaks originate from the zero-point motions of oscillators.

The vibrational ansatz is especially useful to obtain both
addition and excitation energies of the many-body system,
which may be accessed, respectively, by linear and non-
linear tunneling spectroscopy.1,35 The addition energy—the
energy spacing �
�N�=
�N+1�−
�N� between consecutive
chemical potentials—is the charging energy required to add
one electron to the N-body system at zero field.35 �
�N�
may be simply calculated within the ansatz vibrational model
from the static energies of charges located at equilibrium
positions plus their zero-point oscillations. These in turn may
be simply worked out from Appendix D. Figure 7 shows the
dependence of �
�N� on N. The agreement between ED data
�black circles in Fig. 7� and those predicted from the vibra-
tional ansatz �red �gray� squares� is excellent for all values of
R, demonstrating the accuracy of the ansatz wave function.

Excitation energies are given by simply specifying the
quanta of the excited vibrational modes:

E��N� − E0�N� = �
i=1

N

��ini, �22�

with E��N� being the energy of a certain excited state. To
validate this prediction, in Fig. 8 we compare ansatz �red
�gray� lines� and ED �black lines� low-lying excitation ener-
gies E��N�−E0�N� for N=2 �Fig. 8�a��, 3 �Fig. 8�b��, 4 �Fig.
8�c��. For the sake of clarity, here we have neglected the
effect of spin-orbit interaction. The agreement is very good,
particularly at low energies—say less than �2��0—at
which both center-of-mass �Kohn� and breathing modes are
excited �cf. diagrams of Fig. 8�. We attribute the slight dis-
crepancy between black and red �gray� lines of Fig. 8 to the
simplified form of the ansatz two-body potential in compari-
son with the complexity of Coulomb interaction in the CNT.

In the absence of spin-orbit interaction, WM states are
highly degenerate. This comes out naturally from the vibra-
tional ansatz, since electrons at their equilibrium positions
may freely flip both their spins and isospins in 4N possible
ways. This 4N-fold degeneracy is confirmed by ED, except
for tiny splittings �of few tenths of 
eV� due to the residual
electron delocalization. The spin-orbit interaction, induced
by the CNT curvature,7 partially lifts this degeneracy �cf.
Fig. 9 and discussion of Appendix C�. We checked that both
ansatz and ED states have the same �iso�spin structure and
hence spin-orbit induced energy splittings. The latter may be
easily evaluated analytically �cf. Appendix C�.

VIII. CONCLUSION

In conclusion, WM states occur in CNT dots. Crystallized
electrons show a molecular behavior, which is reproduced by
an ansatz many-body wave function. The latter provides
simple predictions for addition energies and excitation
modes of the electron molecule, accessible via tunneling
spectroscopy. These findings are relevant for recent transport
experiments8,9 aimed at achieving coherent spin manipula-
tion in ultraclean nanotubes, since they show that the full
inclusion of Coulomb correlation is an essential step in the
interpretation of chemical potentials and charging energies.
Whether the peculiar features of the CNT Wigner molecule,
like electron localization, isospin,37 and spin-orbit
coupling,7,38 may be combined to provide operational proto-
cols for novel quantum devices remains an open issue. We
hope this work may help stimulate new experiments along
the same path.
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APPENDIX A: NORMALIZATION OF SINGLE-PARTICLE
WAVE FUNCTIONS

By using Eqs. �1�–�3�, we can write the normalization
integral �Eq. �6�� as

�
CNT

�n	
� �r��n�	��r�dr

=
�N�2

Nc
�
p,p�

�
�Rp


�
�R

p�
� 


f	
pf	�

p�ei��
	�
p�−�	

p�ei�K	�·Rp�
� −K	·Rp�

��
CNT

Fn
��y�Fn��y�e−i��	�−	�x/�3R�

��pz

� �r − Rp��pz
�r − Rp�

� �dr . �A1�

Since pz orbitals are strongly localized we neglect two-center
overlaps,

�pz

� �r − Rp��pz
�r − Rp�

� � � ��pz
�r − Rp��2�p,p��Rp,R

p�
� .

�A2�

Moreover, with respect to the length scale of envelope func-
tions, atomic orbitals have an almost singular spatial depen-
dence, so we assume30

��pz
�r − Rp��2 � ��r − Rp�VCNT, �A3�

consistently with Eq. �4�. Inserting Eqs. �A2� and �A3� into
Eq. �A1� we obtain

�
CNT

�n	
� �r��n�	��r�dr

=
�N�2VCNT

Nc
�

p=A,B
f	

pf	�
p

� ei��
	�
p
−�	

p��
�Rp


ei�K	�−K	�·RpFn
��Rp

y�Fn��Rp
y� . �A4�

The last sum in Eq. �A4� is the Fourier component of the
product Fn

��y�Fn��y� of wave vector K	�−K	. The off-
diagonal Fourier component �	�	�� is negligible with re-
spect to the diagonal one �	=	�� since envelope functions
Fn�y� are slowly varying with respect to the lattice scale a.19

By keeping only the leading term all phase factors cancel
and

�
CNT

�n	
� �r��n�	��r�dr = �	,	�

�N�2VCNT

Nc
�
�R


Fn
��Ry�Fn��R

y� ,

�A5�

where �R
 includes both sublattices. By replacing the sum
over lattice sites in Eq. �A5� with an integral on the axial
coordinate y, the following must hold:

�
�R


Fn
��Ry�Fn��R

y� �
g��y�

�y
� Fn

��y�Fn��y�dy , �A6�

where g��y� /�y is the number of atoms occupying a portion
of the CNT of length �y, given by

g��y�
�y

=
2Nc

Ly
. �A7�

By inserting Eqs. �A7� and �7� into Eq. �A6�, we find

�
�R


Fn
��Ry�Fn��R

y� � �n,n�
2Nc�QD

Ly
. �A8�

By inserting back Eq. �A8� into Eq. �A5�, one obtains

�
CNT

�n	
� �r��n�	��r�dr = �n,n��	,	��N�22LxLz�QD, �A9�

from which Eq. �8� immediately follows.

APPENDIX B: TWO-BODY MATRIX ELEMENTS

By inserting expansion �1� into Eq. �15�, using Eqs. �2�
and �3�, and then integrating over the coordinates perpen-
dicular to y exploiting Eqs. �A2� and �A3�, one obtains

U	,	�;	�,	��y,y�� =
Ly

2

4Nc
2�

p

f	
pf	�

p ei��
	�
p

−�	
p�

� �
p�

f	�
p�f	�

p�ei��
	�
p�−�

	�
p���

�Rp


�
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� �
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� U�Rp − Rp�
� ���y − Rp

y���y� − Rp�
�y� ,

�B1�

with M+1=M�M−1=M��. FW and BW integrals correspond,
respectively, to the choices of indices �	 ,	� ;	� ,	� and
�	 ,−	 ;	 ,−	� appearing in Eq. �B1�.

1. FW integrals

Equation �B1� reads as

UFW�y,y�� =
Ly

2

4Nc
2�

�R

�
�R�


U�R − R����y − Ry���y� − R�y� ,

�B2�

where R and R� run over all atomic sites. The matrix element
�Eq. �14�� specialized to Eq. �B2�, after integration over co-
ordinates y and y�, is

Vn,m;s,t =
Ly

2

4Nc
2�QD

2 �
�R


�
�R�


Fn
��Ry�Fm

� �R�y�

� U�R − R��Fs�R�y�Ft�Ry� . �B3�

Going into the continuum limit by following the same pro-
cedure used to derive Eq. �A8� gives

Vn,m;s,t =
1

Lx
2Lz

2�QD
2 � � Fn

��y�Fm
� �y��

� U�r − r��Fs�y��Ft�y�drdr�. �B4�

To proceed it is convenient to write U�r−r�� �Eq. �16�� as

U0�1 + L−2�4R2 sin2	 x − x�

2R

 + �y − y��2 + az

2��−1/2

,

where we have replaced �z−z��2 with the constant value az,
which is the average distance between a 2pz electron and the
nucleus of the carbon atom,39 az=3aB=1.587 Å. Hence, in-
tegrating over the coordinates z and z� cancels out the factor
1 /Lz

2 in Eq. �B4�. By further integrating over x and x� and
comparing the result with Eq. �14� allows for identifying
UFW�y−y�� as Eq. �17�.

2. BW integrals

The two-body matrix element �Eq. �14�� specialized to
Eq. �B1� with indices �	 ,−	 ;	 ,−	� is

Vn,m;s,t�	� =
Ly

2

4Nc
2�QD

2 �
pp�

�2�p,p� − 1�ei	�pp�

� �
�Rp


�
�R

p�
� 


ei	�M�−M�·�Rp−R
p�
� �U�Rp − Rp�

� �

� Fn
��Rp

y�Fm
� �Rp�

�y�Fs�Rp�
�y�Ft�Rp

y� , �B5�

with �AA=�BB=0 and �AB=−�BA=2�+5� /3. We will even-
tually show that the matrix element �Eq. �B5�� does not de-
pend on 	. We may write Rp−Rp�

� appearing in Eq. �B5� as
Rp−Rp�

� =RL+vpp�, with vAA=vBB=0 and vBA=v=−vAB,
where RL is a lattice vector and v is the basis vector connect-
ing B and A sites in graphene unit cell �cf. Fig. 1�. Further-
more, the phase factor in Eq. �B5� may be written as

ei	�M�−M�·�RL+vpp�� = ei	�K�−K�·�RL+vpp�� · e+2i�	�RL + vpp��x/�3R�,

�B6�

where the first exponential is rapidly varying in real space in
comparison with envelope functions since K�−K is not a
reciprocal lattice vector. Therefore, in the lattice site sums
occurring in Eq. �B5� we keep only the leading terms �the
shortest RL close to the origin� and take e+2i�	�RL + vpp��x/�3R�

�1, obtaining

Vn,m;s,t�	� �
Ly

2

4Nc
2�QD

2 �
pp�

�2�p,p� − 1�ei	�pp�

� �
�RL


ei	�K�−K�·�RL+vpp��U�RL + vpp��

� �
�Rp


Fn
��Rp

y�Fm
� �Rp

y�Fs�Rp
y�Ft�Rp

y� . �B7�

We next focus on the quantity22

ŨBW
pp��	� � �

�RL

ei	�K�−K�·�RL+vpp��U�RL + vpp�� �B8�

appearing in Eq. �B7�. As we show in Appendix B 3,

ŨBW
AA �	�= ŨBW

BB �	�= ŨBW �Ref. 22 provides ŨBW=4 eV as an

estimate�, and ŨBW
pp� =0 with p�p� �hence ŨBW

pp� does not de-
pend on 	 since the sums on RL and −RL are equivalent�.
Therefore, by going into the continuum limit, Eq. �B7� be-
comes

Vn,m;s,t =
Ly

2Nc�QD
2 ŨBW� Fn

��y�Fm
� �y�Fs�y�Ft�y�dy .

�B9�

Since the CNT surface area is 2�RLy =AgraphNc, with Agraph
=�3a2 /2 being the area of graphene unit cell, Eq. �B9� may
be written as

Vn,m;s,t =
�3a2

8�R
�QD

−2 ŨBW� Fn
��y�Fm

� �y�Fs�y�Ft�y�dy ,

�B10�

from which Eq. �18� immediately follows.

TABLE II. Classical equilibrium positions of the WM.

N �ȳi /�


2 �−1,+1

3 �−�35 ,0 ,+�35

4 �−wW ,−W ,+W ,+wW

5 �−�35vV ,−�35V ,0 ,+�35V ,+�35vV
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3. Properties of ŨBW
pp� (�)

The only non trivial property to be demonstrated is that

ŨBW
AB =0. It is convenient to write the definition �Eq. �B8�� in

the original graphene reference frame �cf. Fig. 1�. Then

ŨBW
AB = �

�RA

ei	�K�−K�·RAU�RA� . �B11�

The sublattice �RA
 is invariant under the rotation
R−1��2� /3� of all its elements around the origin. Since U�r�
is rotationally invariant, Eq. �B11� may be written as

ŨBW
AB =

1

3 �
�RA


U�RA��ei	�K�−K�·R−1�+2�/3�RA + ei	�K�−K�·RA

+ ei	�K�−K�·R−1�−2�/3�RA
 . �B12�

In terms of integer indices locating RA, Eq. �B12� reads as

ŨBW
AB =

1

3�
n1

�
n2

U�n1,n2�ei	 2��n1+n2�/3

� �e−i	 2�/3 + 1 + e+i	 2�/3
 . �B13�

The expression within the brackets in Eq. �B13� is zero.
QED.

APPENDIX C: EFFECT OF SPIN-ORBIT INTERACTION
ON WM ENERGY LEVELS

The spin-orbit interaction operator which appears in the

many-body Hamiltonian Ĥ �Eq. �10�� has the form �with �

=+1� ĤSO=�SO��̂ /R, with

�̂ = �
n�	

�	ĉn	�
† ĉn	� �C1�

being the total helicity operator. For N electrons, there are
N+1 distinct eigenvalues of �̂,

� = − N,�− N + 2�, . . . ,�N − 2�,N .

Since �̂ commutes with Ĥ �except for the V̂BW term, safely

negligible in the WM limit�, as well as with Ŝy, T̂y, the eigen-

states of Ĥ may be labeled by the sets of quantum numbers

�Sy ,Ty ,��. Therefore, ĤSO splits each WM multiplet, which
is 4N-fold degenerate when B=0, �SO=0, into N+1 compo-
nents �see Fig. 9�. The lowest component has minimum he-
licity, �=−N. This is consistent with states fully polarized
both in spin and isospin, Sy = �N /2 and Ty = �N /2. Further-
more, the magnetic field energetically favors one of the lat-
ter. Therefore, WM states are �iso�spin polarized without ef-
fort even in the presence of spin-orbit interaction, as
confirmed by ED data discussed in Sec. VI.

TABLE III. Classical eigenfrequencies and eigenvectors of the WM. The constant  takes the value  
=−0.521741.

N ��i /�0
 Numerical value Eigenvectors �a.u.�

2 1 1.000 �+1 +1�
�3 1.732 �+1 −1�

3 1 1.000 �+1 +1 +1�
�3 1.732 �+1 0 −1�

�29 /5 2.408 �+1 −2 +1�

4 1 1.000 �+1 +1 +1 +1�

�3 1.732 �+w +1 −1 −w�

� w5−41w4−2w3−118w2+w−1
w5−9w4−2w3−22w2+w−1

�1/2 2.410 �+1 −1 −1 +1�

� 25w4+10w2−3
3w4−2w2−1

�1/2 3.052 �−1 +w −w +1�

5 1 1.000 �+1 +1 +1 +1 +1�

�3 1.732 �+v +1 0 −1 −v�

� 53v6−39v4+79v2−29−16 �6v4−3v2+1�
13v6−15v4+7v2−5

�1/2 2.412 �+1  −2−2  +1�

� 87v6+19v4+37v2−15
13v6−15v4+7v2−5

�1/2 3.055 �−1 +v 0 −v +1�

� �841v6−579v4+203v2�/5−29+16 �6v4−3v2+1�
13v6−15v4+7v2−5

�1/2 3.671 �+1 −3−2 
2+3 

2−2 
2+3 

−3−2 
2+3 +1�
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The residual degeneracies of the multiplet components
may be easily worked out. To this aim, let us define the
“on-site” helicity ��i�=��i�	�i� of the ith particle
�i=1, . . . ,N�, where here we consider distinguishable elec-
trons localized at classical equilibrium positions ȳi. For the
fundamental multiplet, ��i�=−1∀ i, with the value of 	�i�
being uniquely determined once ��i� is fixed. If there are k
spin-down electrons, the number of possible combinations of
��i� and 	�i� giving �=−N is N ! / �k ! �N−k�!�, and since k
may run from 0 to N the degeneracy of the lowest multiplet
is

�
k=0

N
N!

k!�N − k�!
= 2N,

as reported in Fig. 9. For generic multiplets, �=N−2�, with
� being the number of sites with ��i�=−1��=0, . . . ,N�. Us-
ing similar arguments, the degeneracy is found to be

2� · 2N−� N!

�!�N − ��!
= 2N N!

�!�N − ��!
,

consistently with the data of Fig. 9. By summing over all
N+1 multiplet components, one of course recovers the initial
degeneracy,

�
�=0

N

2N N!

�!�N − ��!
= 4N.

APPENDIX D: WM EQUILIBRIUM POSITIONS AND
NORMAL MODES OF VIBRATION

Analytical expressions for the classical equilibrium posi-
tions ȳi�i=1, . . . ,N� of the WM are provided in Table II,
where the length � is the equilibrium coordinate ȳ2 for N
=2. Explicitly,

� = 	 e2

4��0
2m�
1/3

.

Besides, w is the real solution of

w7 − 2w5 − 25w4 + w3 − 6w2 − 1 = 0,

W = �w4 + 2w3 + 10w2 + 2w + 1

w2�w + 1�3 �1/3

,

V = 	13v4 − 2v2 + 5

29v4 − 2v2 + 5

1/3

,

where v is the real solution of

5v7 − 10v5 − 29v4 + 5v3 + 2v2 − 5 = 0.

Numerically, one has w=3.162 120, W=0.721 282, V
=0.763 171, v=2.120 060. These positions also hold for
Table III, which reports the classical eigenfrequencies and
eigenvectors of the WM. The normal coordinates Yi are lin-
ear combinations of the original coordinates yi through coef-
ficients proportional to the components of the eigenvectors
�i=1, . . . ,N�.
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